Geometry and Local Optimality Conditions for Bilevel Programs with Quadratic Strictly Convex Lower Levels

نویسندگان

  • Luis N. Vicente
  • Paul H. Calamai
چکیده

This paper describes necessary and suucient optimality conditions for bilevel programming problems with quadratic strictly convex lower levels. By examining the local geometry of these problems we establish that the set of feasible directions at a given point is composed of a nite union of convex cones. Based on this result, we show that the optimality conditions are simple generalizations of the rst and second order optimality conditions for mathematical (one level) programming problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems

In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...

متن کامل

An Interior Point Technique for Solving Bilevel Programming Problems

This paper deals with bilevel programming programs with convex lower level problems. New necessary and sufficient optimality conditions that involve a single-level mathematical program satisfying the linear independence constraint qualification are introduced. These conditions are solved by an interior point technique for nonlinear programming. Neither the optimality conditions nor the algorith...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

Variational Analysis in Bilevel Programming

The paper is devoted to applications of advanced tools of modern variational analysis and generalized differentiation to problems of optimistic bilevel programming. In this way, new necessary optimality conditions are derived for two major classes of bilevel programs: those with partially convex and with fully convex lower-level problems. We provide detailed discussions of the results obtained ...

متن کامل

Optimality Conditions for the Linear Fractional/quadratic Bilevel Problem

Bilevel programs are optimization problems which have a subset of their variables constrained to be an optimal solution of another problem parameterized by the remaining variables. They have been applied to decentralized planning problems involving a decision process with a hierarchical structure. This paper considers the linear fractional/quadratic bilevel programming (LFQBP) problem, in which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995